Results 1 to 8 of 8

Thread: power sum evaluations

  1. #1
    thinBasic MVPs danbaron's Avatar
    Join Date
    Jan 2010
    Location
    California
    Posts
    1,378
    Rep Power
    152

    power sum evaluations

    This program calculates a power sum twice.

    By a power sum, I mean, for given values of x and n,

    power sum = x^0 + x^1 + x^2 + x^3 + .. + x^n.

    As it is, in the program I have set x=2, and n=100.

    The program calculates the given power sum twice, only the first time it calls the function, "slowevaluation()", and the second time it calls the function, "fastevaluation()".

    (Actually, both of the functions are very slow, but one is much faster than the other.)

    Both evaluations give the same sum.

    The question is, why is the fast function so much faster than the slow function (or vice versa)?

    ' code ----------------------------------------------------------------------------------------------
    Uses "console"
    '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
    %neg = -1
    %pos = +1
    
    %intsize = 500
    
    Type genint
    digit(%intsize) As Byte
    sign As Integer
    error As Byte
    End Type
    
    '--------------------------------------------------------------
    
    Function TBMain()
    Local s As String
    Local t1, t2, tt As Integer
    Local x, ps As genint
    Local n As DWord
    
    'Set value of x (string s).
    s = "2"
    
    'Set number of terms, n.
    n = 20
    
    genintsetvalue(x,s)
    
    PrintL "power sum = x^0 + x^1 + x^2 + .. + x^n"
    PrintL
    PrintL "x = ", Format$(s)
    PrintL "n = ", n
    PrintL
    PrintL "-------------------------------------------------------------"
    PrintL
    
    PrintL "Calculating power sum by slow method."
    t1 = Timer
    slowevaluation(x,n, ps)
    s = genintgetstringrep(ps)
    t2 = Timer
    tt = t2 - t1
    PrintL
    PrintL "sum = ", s
    PrintL
    PrintL "elapsed time = ", tt, " seconds"
    PrintL
    PrintL "-------------------------------------------------------------"
    PrintL
    
    PrintL "Calculating power sum by fast method."
    t1 = Timer
    fastevaluation(x,n, ps)
    s = genintgetstringrep(ps)
    t2 = Timer
    tt = t2 - t1
    PrintL
    PrintL "sum = ", s
    PrintL
    PrintL "elapsed time = ", tt, " seconds"
    PrintL
    PrintL "-------------------------------------------------------------"
    PrintL
    
    PrintL "Done. Press a key to quit."
    
    WaitKey
    End Function
    
    '--------------------------------------------------------------
    
    Function slowevaluation(ByRef x As genint, n As DWord, psum As genint)
    Local xp As genint
    Local s As String
    Local i As Integer
    
    s = "0"
    genintsetvalue(psum,s)
    If n=0 Then Return
    For i = 0 To n
    genintpower(x,i,xp)
    genintadd(psum,xp,psum)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function fastevaluation(ByRef x As genint, n As DWord, psum As genint)
    Local temp, xp As genint
    Local s As String
    Local i As Integer
    
    s = "0"
    genintsetvalue(psum,s)
    If n=0 Then Return
    s = "1"
    genintsetvalue(psum,s)
    genintsetvalue(xp,s)
    For i = 1 To n
    genintmult(xp,x,temp)
    genintsetequal(xp,temp)
    genintadd(psum,xp,psum)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintpower(ByRef x As genint, p As DWord, ByRef xp As genint)
    Local product, temp As genint
    Local s As String
    Local i As Integer
    
    s = "1"
    genintsetvalue(xp,s)
    If p=0 Then Return
    For i = 1 To p
    genintmult(xp,x,temp)
    genintsetequal(xp,temp)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintfactorial(n As Integer) As String
    Local num1, num2, num3 As genint
    Local s As String
    Local i As Integer
    
    s = "1"
    genintsetvalue(num1,s)
    For i = n To 2 Step -1
    PrintL i
    s = Format$(i)
    genintsetvalue(num2,s)
    genintmult(num1,num2,num3)
    genintsetequal(num1,num3)
    Next
    Return genintgetstringrep(num3)
    End Function
    
    '--------------------------------------------------------------
    
    Function genintsetequal(gn2 As genint, gn1 As genint)
    'Set gn2 = gn1.
    Local i As DWord
    For i = 1 To %intsize
    gn2.digit(i) = gn1.digit(i)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintsetvalue(gn As genint, vs As String)
    Local i, l As DWord
    genintzero(gn)
    l = Len(vs)
    For i = 1 To l
    gn.digit(l - i + 1) = Val(Mid$(vs, i, 1))
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintzero(gn As genint)
    Local i As DWord
    For i = 1 To %intsize
    gn.digit(i) = 0
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintsetsign(gn As genint, s As Integer)
    gn.sign = s
    End Function
    
    '--------------------------------------------------------------
    
    Function genintgetstringrep(gn As genint) As String
    Local i, j As DWord
    Local vs As String
    
    vs = ""
    
    If gn.sign > -1 Then
    vs = vs & "+"
    Else
    vs = vs & "-"
    EndIf
    
    i = 0
    
    Do
    If %intsize - i = 0 Then Return "0"
    If gn.digit(%intsize - i) > 0 Then Exit Do
    i += 1
    Loop
     
    For j = i + 1 To %intsize
    vs = vs & Chr$(48 + gn.digit(%intsize - j + 1))
    Next
    
    Return vs
    End Function
    
    '--------------------------------------------------------------
    
    Function genintgetsize(gn As genint) As DWord
    Local i As DWord
    
    i = 0
    
    Do
    If %intsize - i = 0 Then Return 0
    If gn.digit(%intsize - i) > 0 Then Exit Do
    i += 1
    Loop
    
    Return %intsize - i
    End Function
    
    '--------------------------------------------------------------
    
    Function genintseterror(gn As genint)
    gn.error = TRUE
    End Function
    
    '--------------------------------------------------------------
    
    Function genintshiftleft(gn As genint, nplaces As DWord)
    Local sz, i, j As DWord
    
    sz = genintgetsize(gn)
    
    For i = 1 To sz
    j = sz - i + 1
    gn.digit(j + nplaces) = gn.digit(j)
    Next
    
    For i = 1 To nplaces
    gn.digit(i) = 0
    Next
    
    End Function
    
    '--------------------------------------------------------------
    
    Function genintadd(a As genint, b As genint, c As genint)
    Local i As DWord
    Local s, v, k As Byte
    Local asize, bsize, maxsize
    Local temp As genint
    
    asize = genintgetsize(a)
    bsize = genintgetsize(b)
    maxsize = asize
    If bsize > maxsize Then maxsize = bsize
    
    genintzero(temp)
    
    k = 0
    For i = 1 To maxsize + 1
    s = a.digit(i) + b.digit(i) + k
    v = Mod(s, 10)
    k = s \ 10
    temp.digit(i) = v
    Next
    
    For i = 1 To %intsize
    c.digit(i) = temp.digit(i)
    Next
    
    End Function
    
    '--------------------------------------------------------------
    
    Function genintmult(a As genint, b As genint, c As genint)
    Local i, j As DWord
    Local p, v, k As Byte
    Local asize, bsize, tsize As DWord
    Local temp As genint
    
    genintzero(c)
    genintzero(temp)
    
    asize = genintgetsize(a)
    bsize = genintgetsize(b)
    tsize = asize + bsize
    If tsize > %intsize Then
    genintseterror(c)
    Return
    EndIf
    
    For i = 1 To asize
    k = 0
    For j = 1 To bsize + 1
    p = a.digit(i) * b.digit(j) + k
    v = Mod(p, 10)
    k = p \ 10
    temp.digit(j) = v
    Next
    
    genintshiftleft(temp, i - 1)
    genintadd(c, temp, c)
    genintzero(temp)
    Next
    
    End Function
    
    ' output --------------------------------------------------------------------------------------------
    
    power sum = x^0 + x^1 + x^2 + .. + x^n
    
    x =  2
    n =  100
    
    -------------------------------------------------------------
    
    Calculating power sum by slow method.
    
    sum =  +2535301200456458802993406410751
    
    elapsed time =  506  seconds
    
    -------------------------------------------------------------
    
    Calculating power sum by fast method.
    
    sum =  +2535301200456458802993406410751
    
    elapsed time =  16  seconds
    
    -------------------------------------------------------------
    
    Done. Press a key to quit.
    
    Last edited by danbaron; 30-08-2011 at 08:56.
    "You can't cheat an honest man. Never give a sucker an even break, or smarten up a chump." - W.C.Fields

  2. #2
    thinBasic MVPs danbaron's Avatar
    Join Date
    Jan 2010
    Location
    California
    Posts
    1,378
    Rep Power
    152
    I changed the program a little bit, and ran it again, this time with x=2 and n=300.

    Theoretically, the ratio between the slow time and the fast time, when only considering the multiplications, should be
    (n+1)/2.

    For n=300, that would be 150.5

    Here, I got, 2931/30 = 97.7.

    But, there are a lot of additions too, and the number of additions are the same for both methods, so, I think that
    should tend to make the ratio smaller.

    'changed code -----------------------------------------------------------------------------------------------------------------
    Uses "console"
    '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
    %neg = -1
    %pos = +1
    
    %intsize = 100
    
    Type genint
    digit(%intsize) As Byte
    sign As Integer
    error As Byte
    End Type
    
    '--------------------------------------------------------------
    
    Function TBMain()
    Local s As String
    Local t1, t2, tt As Integer
    Local x, ps As genint
    Local n As DWord
    
    'Set value of x (string s).
    s = "2"
    
    'Set number of terms, n.
    n = 300
    
    '--------------------------------------------------------------
    
    Function slowevaluation(ByRef x As genint, n As DWord, psum As genint)
    Local xp As genint
    Local s As String
    Local i As Integer
    
    s = "0"
    genintsetvalue(psum,s)
    If n=0 Then Return
    For i = 0 To n
    genintpower(x,i,xp)
    genintadd(psum,xp,psum)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function fastevaluation(ByRef x As genint, n As DWord, psum As genint)
    Local xp As genint
    Local s As String
    Local i As Integer
    
    s = "0"
    genintsetvalue(psum,s)
    If n=0 Then Return
    s = "1"
    genintsetvalue(psum,s)
    genintsetvalue(xp,s)
    For i = 1 To n
    genintmult(xp,x,xp)
    genintadd(psum,xp,psum)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintpower(ByRef x As genint, p As DWord, ByRef xp As genint)
    Local s As String
    Local i As Integer
    
    s = "1"
    genintsetvalue(xp,s)
    If p=0 Then Return
    For i = 1 To p
    genintmult(xp,x,xp)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function genintfactorial(n As Integer) As String
    Local num1, num2 As genint
    Local s As String
    Local i As Integer
    
    s = "1"
    genintsetvalue(num1,s)
    For i = n To 2 Step -1
    PrintL i
    s = Format$(i)
    genintsetvalue(num2,s)
    genintmult(num1,num2,num1)
    Next
    Return genintgetstringrep(num1)
    End Function
    
    '--------------------------------------------------------------
    
    Function genintmult(a As genint, b As genint, c As genint)
    Local i, j As DWord
    Local p, v, k As Byte
    Local asize, bsize, tsize As DWord
    Local temp, temp1 As genint
    
    genintzero(temp)
    genintzero(temp1)
    
    asize = genintgetsize(a)
    bsize = genintgetsize(b)
    tsize = asize + bsize
    If tsize > %intsize Then
    genintseterror(c)
    Return
    EndIf
    
    For i = 1 To asize
    k = 0
    For j = 1 To bsize + 1
    p = a.digit(i) * b.digit(j) + k
    v = Mod(p, 10)
    k = p \ 10
    temp.digit(j) = v
    Next
    
    genintshiftleft(temp, i - 1)
    genintadd(temp1, temp, temp1)
    genintzero(temp)
    Next
    genintsetequal(c,temp1)
    End Function
    
    'output -----------------------------------------------------------------------------------------------------------------------
    
    power sum = x^0 + x^1 + x^2 + .. + x^n
    
    x =  2
    n =  300
    
    -------------------------------------------------------------
    
    sum = +4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751
    
    elapsed time = 2931 seconds
    
    -------------------------------------------------------------
    
    Calculating power sum by fast method.
    
    sum = +4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751
    
    elapsed time = 30 seconds
    
    -------------------------------------------------------------
    
    Done. Press a key to quit.
    
    Last edited by danbaron; 31-08-2011 at 08:24.
    "You can't cheat an honest man. Never give a sucker an even break, or smarten up a chump." - W.C.Fields

  3. #3
    Member REDEBOLT's Avatar
    Join Date
    Dec 2006
    Location
    Pickerington, Ohio, USA
    Age
    88
    Posts
    62
    Rep Power
    25

    A geometric progression

    sum = x^0 + x^1 + x^2 + x^3 + .. + x^n
    
    Then x*sum = x^1 + x^2 + x^3 + .. + x^(n+1)
    
    Subtract second equation from the first
    
    sum - x*sum = x^0 - x^(n+1)
    
    This is called "telescoping cancellation"
    
    So, sum*(x-1) = x^(n+1) - x^0
    
               x^(n+1) - x^0
    And sum = ---------------
                   (x-1)
    
    Let set x=2, and n=100.
     
                 2^(101) - 1
    Then sum = --------------
                      1
    
    So sum = 2,535,301,200,456,458,802,993,406,410,751
    
    And for n = 300, sum = 4.0740719526689721725368913768188e+90
    
    The results are from the windows calculator.

    Regards,
    Bob

  4. #4
    Member
    Join Date
    Sep 2008
    Location
    Germany
    Posts
    406
    Rep Power
    57
    is this mathematically forum?
    where is the fun at all ? Games, OpenGl and drolly programs.

  5. #5
    Junior Member
    Join Date
    Aug 2011
    Posts
    1
    Rep Power
    0

    the geometric series is fascinating

    I appreciate the nice programming aspects but cannot help by noting that taking the limit of n to infinity is even nicer:

    sum= 1 + x^1 + x^2 + x^3 + ... = 1 + x*( 1 + x^1 + x^2 + ...)

    = 1 + x*sum i.e. sum = 1/(1-x)

    now take x = 2 and find 1 + 2 + 4 + 8 + 16 + ... = -1 !!!

    Juggling with infinite sums can give funny results.

    Kind regards, henks

  6. #6
    thinBasic MVPs danbaron's Avatar
    Join Date
    Jan 2010
    Location
    California
    Posts
    1,378
    Rep Power
    152
    A geometric series,

    a + ar + ar2 + ar3 + .. (to infinity)

    only converges to the value,

    sum = a/(1-r),

    if abs(r) < 1, right?


    --------------------------------------------------------------------------------

    For a conditionally convergent series, you can make the sum anything you want, depending on the order in which you add the terms.

    The series,

    1 - 1/2 + 1/3 - 1/4 + .., is conditionally convergent.

    For this series, by rearranging the terms, you can make the sum any number, you can even make it diverge (become infinite).

    The reason is that, the positive terms alone form a divergent series, and so do the negative terms alone.

    --------------------------------------------------------------------------------

    Here is what I wanted to show in the program.

    The slow method calculates the sum like this:

    1 + x + x*x + x*x*x + x*x*x*x + .. + x*x*x*x*x* (n times for the last term)

    You can see that in the program, during each iteration, it calls the power function, which calculates x^i by multiplying x*x*x.., i times.

    The number of multiplications of x is, n*(n+1)/2, or, (n^2+n)/2.

    The fast method calculates the sum like this:

    xp = 1
    sum = 0
    for i = 0 to n
    xp = xp*i
    sum = sum + xp
    next

    So, in order to find the sum, it only calculates x*x*x*x.., up to n, one time.

    The number of multiplications of x, is n.

    The time ratio of the slow method to the fast method, when only taking into account the x multiplications is,

    (n^2+n)/2/n, = (n+1)/2.

    --------------------------------------------------------------------------------

    For x=2, and n,

    you can calculate the sum instantaneously.


    It is,

    x^(n+1) - 1, (what Bob said).


    Last edited by danbaron; 31-08-2011 at 20:25.
    "You can't cheat an honest man. Never give a sucker an even break, or smarten up a chump." - W.C.Fields

  7. #7
    Dan, try this inpower function, of course you need to change it to use your math functions.

    Function odd(ByVal n As Long) As Long
      Function = n And 1
    End Function
    Function even(ByVal n As Long) As Long
      Function = 1-(n And 1)
    End Function
    Function intpower(ByRef x As Ext, p As DWord, byref xp as ext)
    Local xp, xt As Ext
    Local rm As Integer
    rm = p
    xp = 1
    xt = x
    While rm>0
      While even(rm)
        rm = rm\2
        xt = xt*xt
      Wend
      rm -= 1
      xp=xp*xt
    Wend
    End Function
    

  8. #8
    thinBasic MVPs danbaron's Avatar
    Join Date
    Jan 2010
    Location
    California
    Posts
    1,378
    Rep Power
    152
    Concerning fun and games, post them.

    -------------------------------------------------------------------------------------------------------------------------------

    I see what Bob did with the series.

    That is really nice, and works for any value of x.

    -------------------------------------------------------------------------------------------------------------------------------

    Wow, what a difference your function makes, Johan!

    Very smart, continually squaring x.

    For x=2 and n=300, the time went from 2931 seconds, to 46 seconds!!

    (I changed your "even" function, because, I didn't understand it.)

    'changed code -----------------------------------------------------------------------------------------------------------------
    
    Function slowevaluation(ByRef x As genint, n As DWord, psum As genint)
    Local xp As genint
    Local s As String
    Local i As Integer
    
    s = "0"
    genintsetvalue(psum,s)
    If n=0 Then Return
    For i = 0 To n
    PrintL i
    genintpowerjack(x,i,xp)
    genintadd(psum,xp,psum)
    Next
    End Function
    
    '--------------------------------------------------------------
    
    Function even(ByVal n As Long) As Long
    If Mod(n,2)= 0 Then Return TRUE
    Return FALSE
    End Function
    
    '--------------------------------------------------------------
    
    Function genintpowerjack(ByRef x As genint, p As DWord, ByRef xp As genint)
    Local xt As genint
    Local rm As Integer
    Local s As String
    rm = p
    s = "1"
    genintsetvalue(xp,s)
    genintsetequal(xt,x)
    While rm>0
    While even(rm)
    rm = rm\2
    genintmult(xt,xt,xt)
    Wend
    rm -= 1
    genintmult(xp,xt,xp)
    Wend
    End Function
    
    'output -----------------------------------------------------------------------------------------------------------------------
    
    sum =  +4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751
    
    elapsed time =  46  seconds
    
    -------------------------------------------------------------
    
    Calculating power sum by fast method.
    
    sum =  +4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751
    
    elapsed time =  32  seconds
    
    -------------------------------------------------------------
    
    Done. Press a key to quit.
    
    Last edited by danbaron; 01-09-2011 at 07:15.
    "You can't cheat an honest man. Never give a sucker an even break, or smarten up a chump." - W.C.Fields

Similar Threads

  1. power-tower function
    By danbaron in forum Science
    Replies: 0
    Last Post: 29-05-2011, 05:32
  2. Power supply calculator
    By Michael Clease in forum General
    Replies: 8
    Last Post: 12-04-2008, 08:36
  3. Power Basic news
    By ErosOlmi in forum Power Basic
    Replies: 2
    Last Post: 11-10-2007, 06:24

Members who have read this thread: 0

There are no members to list at the moment.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •