Petr Schreiber
24-01-2009, 11:24
One of possible solutions for problem #8
' Solution for Eulers Problem #8 as defined here http://projecteuler.net/index.php?section=problems&id=8
' Petr Schreiber, 2008
USES "Console"
dim i as long
dim t1, t2 as quad
dim product, maxProduct as long
printl "Calculating Eulers problem #8"
printl "=> Find the greatest product of five consecutive"+$CRLF+"=> digits in the 1000-digit number."
printl REPEAT$(64, "-")
hiResTimer_init
t1 = hiResTimer_Get
dim sBigNumber as string = "73167176531330624919225119674426574742355349194934"+ _
"96983520312774506326239578318016984801869478851843"+ _
"85861560789112949495459501737958331952853208805511"+ _
"12540698747158523863050715693290963295227443043557"+ _
"66896648950445244523161731856403098711121722383113"+ _
"62229893423380308135336276614282806444486645238749"+ _
"30358907296290491560440772390713810515859307960866"+ _
"70172427121883998797908792274921901699720888093776"+ _
"65727333001053367881220235421809751254540594752243"+ _
"52584907711670556013604839586446706324415722155397"+ _
"53697817977846174064955149290862569321978468622482"+ _
"83972241375657056057490261407972968652414535100474"+ _
"82166370484403199890008895243450658541227588666881"+ _
"16427171479924442928230863465674813919123162824586"+ _
"17866458359124566529476545682848912883142607690042"+ _
"24219022671055626321111109370544217506941658960408"+ _
"07198403850962455444362981230987879927244284909188"+ _
"05886116467109405077541002256983155200055935729725"+ _
"84580156166097919133875499200524063689912560717606"+ _
"71636269561882670428252483600823257530420752963450"
' -- In the string above 1 "letter" correspods to 1 number
' -- By overlaying the byte array over string we get array
' -- of ASCII values. ASCII 0 = 48, ASCII 1 = 49 ... so we
' -- subtract lower boundary to get real numbers
dim BigNumberArray(1000) as byte at strptr(sBigNumber)
for i = 1 to 1000
BigNumberArray(i) -= 48
next
for i = 1 to 996 ' -- Last quintet will be 996 997 998 999 1000
product = BigNumberArray(i) * BigNumberArray(i+1) * BigNumberArray(i+2) * BigNumberArray(i+3) * BigNumberArray(i+4)
maxproduct = max(product, maxproduct)
next
t2 = hiResTimer_Get
printl "Result: "+FORMAT$(maxProduct, "0,")+"; calculation took"+STR$(t2-t1)+" microseconds"
waitkey
' Solution for Eulers Problem #8 as defined here http://projecteuler.net/index.php?section=problems&id=8
' Petr Schreiber, 2008
USES "Console"
dim i as long
dim t1, t2 as quad
dim product, maxProduct as long
printl "Calculating Eulers problem #8"
printl "=> Find the greatest product of five consecutive"+$CRLF+"=> digits in the 1000-digit number."
printl REPEAT$(64, "-")
hiResTimer_init
t1 = hiResTimer_Get
dim sBigNumber as string = "73167176531330624919225119674426574742355349194934"+ _
"96983520312774506326239578318016984801869478851843"+ _
"85861560789112949495459501737958331952853208805511"+ _
"12540698747158523863050715693290963295227443043557"+ _
"66896648950445244523161731856403098711121722383113"+ _
"62229893423380308135336276614282806444486645238749"+ _
"30358907296290491560440772390713810515859307960866"+ _
"70172427121883998797908792274921901699720888093776"+ _
"65727333001053367881220235421809751254540594752243"+ _
"52584907711670556013604839586446706324415722155397"+ _
"53697817977846174064955149290862569321978468622482"+ _
"83972241375657056057490261407972968652414535100474"+ _
"82166370484403199890008895243450658541227588666881"+ _
"16427171479924442928230863465674813919123162824586"+ _
"17866458359124566529476545682848912883142607690042"+ _
"24219022671055626321111109370544217506941658960408"+ _
"07198403850962455444362981230987879927244284909188"+ _
"05886116467109405077541002256983155200055935729725"+ _
"84580156166097919133875499200524063689912560717606"+ _
"71636269561882670428252483600823257530420752963450"
' -- In the string above 1 "letter" correspods to 1 number
' -- By overlaying the byte array over string we get array
' -- of ASCII values. ASCII 0 = 48, ASCII 1 = 49 ... so we
' -- subtract lower boundary to get real numbers
dim BigNumberArray(1000) as byte at strptr(sBigNumber)
for i = 1 to 1000
BigNumberArray(i) -= 48
next
for i = 1 to 996 ' -- Last quintet will be 996 997 998 999 1000
product = BigNumberArray(i) * BigNumberArray(i+1) * BigNumberArray(i+2) * BigNumberArray(i+3) * BigNumberArray(i+4)
maxproduct = max(product, maxproduct)
next
t2 = hiResTimer_Get
printl "Result: "+FORMAT$(maxProduct, "0,")+"; calculation took"+STR$(t2-t1)+" microseconds"
waitkey